Silicon bipolar impact ionization MOSFET offers the potential for realization of leaky integrated fire (LIF) neuron due to the presence of parasitic BJT in the floating body. In this work, we have proposed an L shaped gate bipolar impact ionization MOS (L-BIMOS), with reduced breakdown voltage ($V_{B}$ = 1.68 V) and demonstrated the functioning of LIF neuron based on positive feedback mechanism of parasitic BJT. Using 2-D TCAD simulations, we manifest that the proposed L-BIMOS exhibits a low threshold voltage (0.2 V) for firing a spike, and the minimum energy required to fire a single spike for L-BIMOS is calculated to be 0.18 pJ, which makes proposed device $194\times$ more energy efficient than PD-SOI MOSFET silicon neuron (MOSFET silicon neuron) and $5\times10^{3}$ times more energy efficient than analog/digital circuit based conventional neuron. Furthermore, the proposed L-BIMOS silicon neuron exhibits spiking frequency in the GHz range, when the drain is biased at $V_{DG}$ = 2.0 V.


翻译:由于浮体中存在寄生虫BJT(LIF),MOSFET提供了实现泄漏综合火灾(LIF)神经神经元的潜力,在这项工作中,我们提出了L型门双极影响离子化MOS(L-BIMOS),减少碎裂电压(V ⁇ B}$=1.68 V),并根据寄生虫BJT的积极反馈机制展示了LIF神经神经元的功能。 使用2-D TCAD模拟,我们表明拟议的L-BIMOS(L-BIMOS)在发射峰值时展示了低门槛电压(0.2V),而发射L-BIMOS(L-BIMOS)单一次加压所需的最低能量计算为0.18 pJ,这使得拟议的设备194美元时的能效比PD-SOI MOSFET SISET siliconn(MOSFET silicon) 和5\times10 10}比基于常规神经的模拟/数字电路节效率高一倍。此外,拟议的L-BIMOS MSx RA SA Rent ASylex SA 时,拟议的L-DGMS SS SS SS OR 时,拟议的L-DRAx RAD Rent。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
专知会员服务
162+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2019年3月19日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
4+阅读 · 2018年4月30日
Arxiv
5+阅读 · 2018年1月29日
Arxiv
4+阅读 · 2015年8月25日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
专知会员服务
162+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员