Precise robotic grasping of several novel objects is a huge challenge in manufacturing, automation, and logistics. Most of the current methods for model-free grasping are disadvantaged by the sparse data in grasping datasets and by errors in sensor data and contact models. This study combines data generation and sim-to-real transfer learning in a grasping framework that reduces the sim-to-real gap and enables precise and reliable model-free grasping. A large-scale robotic grasping dataset with dense grasp labels is generated using domain randomization methods and a novel data augmentation method for deep learning-based robotic grasping to solve data sparse problem. We present an end-to-end robotic grasping network with a grasp optimizer. The grasp policies are trained with sim-to-real transfer learning. The presented results suggest that our grasping framework reduces the uncertainties in grasping datasets, sensor data, and contact models. In physical robotic experiments, our grasping framework grasped single known objects and novel complex-shaped household objects with a success rate of 90.91%. In a complex scenario with multi-objects robotic grasping, the success rate was 85.71%. The proposed grasping framework outperformed two state-of-the-art methods in both known and unknown object robotic grasping.
翻译:在制造、自动化和物流方面,最精确的机器人掌握若干新事物是一项巨大的挑战。目前,大多数不使用模型的掌握方法都因掌握数据集的数据稀少以及传感器数据和接触模型的错误而处于不利地位。本研究将数据生成和模拟到实际的转移学习结合到一个掌握框架,这个框架可以减少模拟到现实的差距,并能够准确和可靠地获得没有模型的掌握。在物理机器人实验中,利用广密的随机化方法和一种基于深层次学习的机器人掌握数据以解决数据稀少问题的新型数据增强方法,产生了一个大型的机器人掌握数据集,这个框架具有密集的掌握标签,它使用域随机化方法和一种基于深层学习的机器人掌握解决数据稀少问题的新型数据增强方法。我们用一个掌握优化器展示了一个终端到终端的机器人捕捉网络。掌握政策通过模拟到真实的转移学习得到训练。 提出的结果表明,我们的掌握框架减少了掌握数据集、传感器数据和接触模型时的不确定性。 在实际机器人实验中,我们掌握的单个已知的物体和新复杂的复合型家庭物体,其成功率为90.91%。在一个复杂的情景中,由多位机器人掌握的机器人掌握机器人掌握的两部的机器人掌握模型的模型模型模型模型,其成功率为8571%。