Let $X$ be a $d$-partite $d$-dimensional simplicial complex with parts $T_1,\dots,T_d$ and let $\mu$ be a distribution on the facets of $X$. Informally, we say $(X,\mu)$ is a path complex if for any $i<j<k$ and $F \in T_i,G \in T_j, K\in T_k$, we have $\mathbb{P}_\mu[F,K | G]=\mathbb{P}_\mu[F|G]\cdot\mathbb{P}_\mu[K|G].$ We develop a new machinery with $\mathcal{C}$-Lorentzian polynomials to show that if all links of $X$ of co-dimension 2 have spectral expansion at most $1/2$, then $X$ is a $1/2$-local spectral expander. We then prove that one can derive fast-mixing results and log-concavity statements for top-link spectral expanders. We use our machinery to prove fast mixing results for sampling maximal flags of flats of distributive lattices (a.k.a. linear extensions of posets) subject to external fields, and to sample maximal flags of flats of "typical" modular lattices. We also use it to re-prove the Heron-Rota-Welsh conjecture and to prove a conjecture of Chan and Pak which gives a generalization of Stanley's log-concavity theorem. Lastly, we use it to prove near optimal trickle-down theorems for "sparse complexes" such as constructions by Lubotzky-Samuels-Vishne, Kaufman-Oppenheim, and O'Donnell-Pratt.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员