This paper studies the generalization of the targeted minimum loss-based estimation (TMLE) framework to estimation of effects of time-varying interventions in settings where both interventions, covariates, and outcome can happen at subject-specific time-points on an arbitrarily fine time-scale. TMLE is a general template for constructing asymptotically linear substitution estimators for smooth low-dimensional parameters in infinite-dimensional models. Existing longitudinal TMLE methods are developed for data where observations are made on a discrete time-grid. We consider a continuous-time counting process model where intensity measures track the monitoring of subjects, and focus on a low-dimensional target parameter defined as the intervention-specific mean outcome at the end of follow-up. To construct our TMLE algorithm for the given statistical estimation problem we derive an expression for the efficient influence curve and represent the target parameter as a functional of intensities and conditional expectations. The high-dimensional nuisance parameters of our model are estimated and updated in an iterative manner according to separate targeting steps for the involved intensities and conditional expectations. The resulting estimator solves the efficient influence curve equation. We state a general efficiency theorem and describe a highly adaptive lasso estimator for nuisance parameters that allows us to establish asymptotic linearity and efficiency of our estimator under minimal conditions on the underlying statistical model.


翻译:本文研究对目标最低损失估计(TMLE)框架的概括性,以估计在干预、共变和结果都可在任意的细微时间尺度上出现的特定主题时间点时段进行的时间变化干预(TMLE)的影响。TMLE是用于在无限模型中为平滑的低维参数构建无症状线性线性替代估测器的一般模板。现有纵向TMLE方法是为在离散的时间网格上进行观测的数据开发的。我们考虑一个连续时间计时程序模型,其中强度措施跟踪对主题的监测,并侧重于作为后续结束时特定干预平均结果的低维目标参数。为了构建我们针对特定统计估计问题的TMLE算法,我们提出了高效影响曲线的表达,并代表目标参数作为强度和有条件期望的功能。我们模型的高维度扰动值参数以迭代方式估算和更新,以不同的目标步骤跟踪所涉强度和有条件期望。由此而形成的估测值的低维度指标参数将测量结果描述成一个高效的适应性曲线方程式。

0
下载
关闭预览

相关内容

专知会员服务
141+阅读 · 2021年3月17日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
已删除
将门创投
5+阅读 · 2019年10月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Higher Order Targeted Maximum Likelihood Estimation
Arxiv
0+阅读 · 2021年6月23日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
已删除
将门创投
5+阅读 · 2019年10月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员