Asymptotic efficiency of targeted maximum likelihood estimators (TMLE) of target features of the data distribution relies on a a second order remainder being asymptotically negligible. In previous work we proposed a nonparametric MLE termed Highly Adaptive Lasso (HAL) which parametrizes the relevant functional of the data distribution in terms of a multivariate real valued cadlag function that is assumed to have finite variation norm. We showed that the HAL-MLE converges in Kullback-Leibler dissimilarity at a rate n-1/3 up till logn factors. Therefore, by using HAL as initial density estimator in the TMLE, the resulting HAL-TMLE is an asymptotically efficient estimator only assuming that the relevant nuisance functions of the data density are cadlag and have finite variation norm. However, in finite samples, the second order remainder can dominate the sampling distribution so that inference based on asymptotic normality would be anti-conservative. In this article we propose a new higher order TMLE, generalizing the regular first order TMLE. We prove that it satisfies an exact linear expansion, in terms of efficient influence functions of sequentially defined higher order fluctuations of the target parameter, with a remainder that is a k+1th order remainder. As a consequence, this k-th order TMLE allows statistical inference only relying on the k+1th order remainder being negligible. We also provide a rationale for the higher order TMLE that it will be superior to the first order TMLE by (iteratively) locally minimizing the exact finite sample remainder of the first order TMLE. The second order TMLE is demonstrated for nonparametric estimation of the integrated squared density and for the treatment specific mean outcome. We also provide an initial simulation study for the second order TMLE of the treatment specific mean confirming the theoretical analysis.


翻译:在先前的工作中,我们提出了一个非对称 MLE 称为高度适应性拉索(HAL), 假设数据密度的相关微调功能具有一定的变异性规范。我们显示, HAL-MLE 会在 Kullback- Leibild 的分布中以n-1/3 的速率和日志因数相悖。因此,通过在TMLE中将 HAL 用作初始密度比值的测算器,产生的 HAL-TMLE 是一个非对称 MLE (HAL) 的高效测算器,它只能假设数据密度的相关微调功能是封闭的,并且具有一定的变异规范。然而,在有限的样本中,第二顺序可以控制取样分布,这样基于不均度的推论将具有反调性。因此,在本文章中,我们提出一个新的更高顺序的测算值为 IMLE+ 的直径直值比值, 也能够使常规的直径顺序得到常规的测序。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
167+阅读 · 2020年4月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月24日
Arxiv
0+阅读 · 2021年8月20日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
167+阅读 · 2020年4月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员