We introduce the Gaussian orthogonal latent factor processes for modeling and predicting large correlated data. To handle the computational challenge, we first decompose the likelihood function of the Gaussian random field with a multi-dimensional input domain into a product of densities at the orthogonal components with lower-dimensional inputs. The continuous-time Kalman filter is implemented to compute the likelihood function efficiently without making approximations. We also show that the posterior distribution of the factor processes is independent, as a consequence of prior independence of factor processes and orthogonal factor loading matrix. For studies with large sample sizes, we propose a flexible way to model the mean, and we derive the marginal posterior distribution to solve identifiability issues in sampling these parameters. Both simulated and real data applications confirm the outstanding performance of this method.


翻译:我们引入了用于模拟和预测大相关数据的高斯正方位潜在系数进程。 为了处理计算挑战, 我们首先将带有多维输入域的高斯随机字段的可能性功能分解为具有低维输入的正方位组件密度的产物。 连续时间 Kalman 过滤器可以有效计算概率功能, 而不制作近似值 。 我们还显示, 由于元素过程和正方位要素装载矩阵先前的独立性, 该元素过程的后端分布是独立的。 对于具有大样本大小的研究, 我们提出一种灵活的方式来模拟平均值, 我们从边缘的远方分布中找到这些参数的可识别性问题。 模拟和真实数据应用都证实了这一方法的杰出性能 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月24日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
Top
微信扫码咨询专知VIP会员