We introduce the Gaussian orthogonal latent factor processes for modeling and predicting large correlated data. To handle the computational challenge, we first decompose the likelihood function of the Gaussian random field with a multi-dimensional input domain into a product of densities at the orthogonal components with lower-dimensional inputs. The continuous-time Kalman filter is implemented to compute the likelihood function efficiently without making approximations. We also show that the posterior distribution of the factor processes is independent, as a consequence of prior independence of factor processes and orthogonal factor loading matrix. For studies with large sample sizes, we propose a flexible way to model the mean, and we derive the marginal posterior distribution to solve identifiability issues in sampling these parameters. Both simulated and real data applications confirm the outstanding performance of this method.
翻译:我们引入了用于模拟和预测大相关数据的高斯正方位潜在系数进程。 为了处理计算挑战, 我们首先将带有多维输入域的高斯随机字段的可能性功能分解为具有低维输入的正方位组件密度的产物。 连续时间 Kalman 过滤器可以有效计算概率功能, 而不制作近似值 。 我们还显示, 由于元素过程和正方位要素装载矩阵先前的独立性, 该元素过程的后端分布是独立的。 对于具有大样本大小的研究, 我们提出一种灵活的方式来模拟平均值, 我们从边缘的远方分布中找到这些参数的可识别性问题。 模拟和真实数据应用都证实了这一方法的杰出性能 。