Space-filling curves (SFCs) are used in high performance computing to distribute a computational domain or its mesh, respectively, amongst different compute units, i.e.~cores or nodes or accelerators. The part of the domain allocated to each compute unit is called a partition. Besides the balancing of the work, the communication cost to exchange data between units determines the quality of a chosen partition. This cost can be approximated by the surface-to-volume ratio of partitions: the volume represents the amount of local work, while the surface represents the amount of data to be transmitted. Empirical evidence suggests that space-filling curves yield advantageous surface-to-volume ratios. Formal proofs are available only for regular grids. We investigate the surface-to-volume ratio of space-filling curve partitions for adaptive grids and derive the maximum surface-to-volume ratio as a function of the number of cells in the partition. In order to prove our main theorem, we construct a new framework for the study of adaptive grids, notably introducing the concepts of a shape and of classified partitions. The new methodological framework yields insight about the SFC-induced partition character even if the grids refine rather aggressively in localised areas: it quantifies the obtained surface-to-volume ratio. This framework thus has the potential to guide the design of better load balancing algorithms on the long term.
翻译:在高性能计算中使用空间填充曲线(SFCs)用于在不同计算单位之间分配计算域或其网格,即 ~ 核心或节点或加速器。 分配给每个计算单位的部分域称为分割区。 除了工作平衡, 单位之间交换数据的通信成本可以决定所选分区的质量。 这一成本可以用分区的表层对体积比例来比较。 为了证明我们的主要理论, 我们为适应网格的研究建立了一个新的框架, 特别是引入了一种形状和经分类的地面对体积比率。 正式的证明只提供给常规网格。 我们调查适应网格的空填充曲线分区的表面对体积比例, 并得出最大表层对体积的比例。 为了证明我们的主要理论, 我们为适应网格的研究建立了一个新的框架, 特别是引入了这种形状和经分类的地面对体积比。 因此, 新的方法学框架将空间填充曲线的表面对体积比比作为分区数的函数。 新的方法学框架将它更精确地对地平整了, 。