Tensor completion aims at imputing missing entries from a partially observed tensor. Existing tensor completion methods often assume either multi-linear or nonlinear relationships between latent components. However, real-world tensors have much more complex patterns where both multi-linear and nonlinear relationships may coexist. In such cases, the existing methods are insufficient to describe the data structure. This paper proposes a Joint mUlti-linear and nonLinear IdentificAtion (JULIA) framework for large-scale tensor completion. JULIA unifies the multi-linear and nonlinear tensor completion models with several advantages over the existing methods: 1) Flexible model selection, i.e., it fits a tensor by assigning its values as a combination of multi-linear and nonlinear components; 2) Compatible with existing nonlinear tensor completion methods; 3) Efficient training based on a well-designed alternating optimization approach. Experiments on six real large-scale tensors demonstrate that JULIA outperforms many existing tensor completion algorithms. Furthermore, JULIA can improve the performance of a class of nonlinear tensor completion methods. The results show that in some large-scale tensor completion scenarios, baseline methods with JULIA are able to obtain up to 55% lower root mean-squared-error and save 67% computational complexity.
翻译:线性完成图旨在估算部分观测到的沙粒的缺失条目。 现有的沙粒完成方法往往假定潜在组成部分之间多线性或非线性关系。 然而, 现实世界的沙子具有更复杂的模式, 多线性和非线性关系可能同时存在。 在这种情况下, 现有的方法不足以描述数据结构。 本文提议了一个用于大规模加速完成的 mUlti- 线性和非线性标识化联合框架( JULIA) 。 JULIA 实验显示, 多线性和非线性强度完成模型比现有方法具有若干优势:1 灵活模型选择, 即, 它适合一个强度, 将其值指定为多线性和非线性关系的组合; (2) 与现有的非线性线性强完成方法相匹配;(3) 基于精心设计的交替优化方法的有效培训。 对六种真正的大型蒸汽的实验表明, JULIA 超越了许多现有的高压完成算法。 此外, JULIA 和低级的递增率方法可以改进等级的快速完成率方法。