Type-4 clones refer to a pair of code snippets with similar semantics but written in different syntax, which challenges the existing code clone detection techniques. Previous studies, however, highly rely on syntactic structures and textual tokens, which cannot precisely represent the semantic information of code and might introduce non-negligible noise into the detection models. To overcome these limitations, we design a novel semantic graph-based deep detection approach, called SEED. For a pair of code snippets, SEED constructs a semantic graph of each code snippet based on intermediate representation to represent the code semantic more precisely compared to the representations based on lexical and syntactic analysis. To accommodate the characteristics of Type-4 clones, a semantic graph is constructed focusing on the operators and API calls instead of all tokens. Then, SEED generates the feature vectors by using the graph match network and performs clone detection based on the similarity among the vectors. Extensive experiments show that our approach significantly outperforms two baseline approaches over two public datasets and one customized dataset. Especially, SEED outperforms other baseline methods by an average of 25.2% in the form of F1-Score. Our experiments demonstrate that SEED can reach state-of-the-art and be useful for Type-4 clone detection in practice.


翻译:类型-4 克隆是指一对具有类似语义学的代码片段,但以不同的语法写成,对现有的代码克隆探测技术提出了挑战。然而,以往的研究高度依赖合成结构和文本符号,这些符号不能准确地代表代码的语义信息,可能会在检测模型中引入不可忽略的噪音。为了克服这些局限性,我们设计了一个新型的语义图形深度探测方法,称为SEEED。对于一对代码片段,SEID构建了一个每个代码片段的语义图,以中间表达方式为基础,更准确地代表代码语义学,与基于词汇和合成分析的表达方式相比。为了容纳类型-4 克隆的特征,正在构建一个以操作者为主的语义图解图,并可能在所有符号中引入不可忽略的噪音。然后,SEEEDD通过图形匹配网络并根据矢量的相似性进行克隆检测。广泛的实验表明,我们的方法在两个公共数据集和一个定制的数据集中,两个基线方法明显优于两个基准路径,一个定制的数据集,一个是SEEECD-D 平均的S- 25D 样实验中,可以展示其他的基样样的基样方法。

0
下载
关闭预览

相关内容

代码(Code)是专知网的一个重要知识资料文档板块,旨在整理收录论文源代码、复现代码,经典工程代码等,便于用户查阅下载使用。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2021年9月22日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员