Twitter bot detection is an important and meaningful task. Existing text-based methods can deeply analyze user tweet content, achieving high performance. However, novel Twitter bots evade these detections by stealing genuine users' tweets and diluting malicious content with benign tweets. These novel bots are proposed to be characterized by semantic inconsistency. In addition, methods leveraging Twitter graph structure are recently emerging, showing great competitiveness. However, hardly a method has made text and graph modality deeply fused and interacted to leverage both advantages and learn the relative importance of the two modalities. In this paper, we propose a novel model named BIC that makes the text and graph modalities deeply interactive and detects tweet semantic inconsistency. Specifically, BIC contains a text propagation module, a graph propagation module to conduct bot detection respectively on text and graph structure, and a proven effective text-graph interactive module to make the two interact. Besides, BIC contains a semantic consistency detection module to learn semantic consistency information from tweets. Extensive experiments demonstrate that our framework outperforms competitive baselines on a comprehensive Twitter bot benchmark. We also prove the effectiveness of the proposed interaction and semantic consistency detection.
翻译:以文字为基础的现有方法可以深入分析用户推特内容,实现高性能。然而,新颖的Twitter机器人通过窃取真正的用户的推文和用温和的推文稀释恶意内容来回避这些检测。这些新颖的机器人的特点是语义不一致。此外,利用Twitter图表结构的方法最近才出现,显示出巨大的竞争力。然而,几乎没有一种方法能够使文本和图表模式紧密结合和互动,以利用两种模式的优势并了解其相对重要性。在本文中,我们提出了一个名为BIC的新模式,使文本和图表模式具有深度的互动性,并发现推特语义不一致。具体地说,BIC包含一个文本传播模块,一个用于分别对文本和图形结构进行机器人检测的图表传播模块,以及一个经过实践证明有效的文本绘图互动模块,以使两种互动。此外,BIC包含一个语义一致性检测模块,以便从推文中学习语义一致性信息。广泛的实验表明,我们的框架在全面的Twitter机器人基准上超越了竞争性基线。我们还证明了拟议的互动的有效性和语义一致性检测的一致性。