We present an illustrative study in which we use a mixture of regressions model to improve on an ill-fitting simple linear regression model relating log brain mass to log body mass for 100 placental mammalian species. The slope of the model is of particular scientific interest because it corresponds to a constant that governs a hypothesized allometric power law relating brain mass to body mass. We model these data using an anchored Bayesian mixture of regressions model, which modifies the standard Bayesian Gaussian mixture by pre-assigning small subsets of observations to given mixture components with probability one. These observations (called anchor points) break the relabeling invariance (or label-switching) typical of exchangeable models. In the article, we develop a strategy for selecting anchor points using tools from case influence diagnostics. We compare the performance of three anchoring methodson the allometric data and in simulated settings.
翻译:我们提出一个说明性研究,用一种混合的回归模型来改进一个不合适的简单线性回归模型,将原木脑质量与100个胎盘哺乳动物物种的日志体积联系起来。模型的斜坡具有特别的科学意义,因为它与一个常数相对应,该常数对应于一个与大脑质量和身体质量有关的假设性等量功率定律。我们用一个固定的贝叶斯混合回归模型来模拟这些数据,该模型通过预先将少量观测子集到给定混合物成分的概率之一来修改标准贝叶西亚高斯混合物。这些观测结果(所谓的锚点)打破了可交换模型的惯性重新标签(或标签切换)的典型。在文章中,我们用案例影响诊断的工具来制定选择锚点的战略。我们比较了三个锚定方法的性能,以模拟方式对全谱数据进行对比。