Multivariate time series forecasting with hierarchical structure is pervasive in real-world applications, demanding not only predicting each level of the hierarchy, but also reconciling all forecasts to ensure coherency, i.e., the forecasts should satisfy the hierarchical aggregation constraints. Moreover, the disparities of statistical characteristics between levels can be huge, worsened by non-Gaussian distributions and non-linear correlations. To this extent, we propose a novel end-to-end hierarchical time series forecasting model, based on conditioned normalizing flow-based autoregressive transformer reconciliation, to represent complex data distribution while simultaneously reconciling the forecasts to ensure coherency. Unlike other state-of-the-art methods, we achieve the forecasting and reconciliation simultaneously without requiring any explicit post-processing step. In addition, by harnessing the power of deep model, we do not rely on any assumption such as unbiased estimates or Gaussian distribution. Our evaluation experiments are conducted on four real-world hierarchical datasets from different industrial domains (three public ones and a dataset from the application servers of Alipay's data center) and the preliminary results demonstrate efficacy of our proposed method.
翻译:使用等级结构的多变时间序列预测在现实世界应用中十分普遍,不仅要求预测等级的每个级别,而且要求调和所有预测以确保一致性,即预测应满足等级汇总的限制;此外,不同等级之间的统计特征差异可能很大,由于非加苏西语分布和非线性关联而加剧。在这方面,我们提出一个新的端对端等级时间序列预测模型,以有条件的正常流基自动递减变压器对等为基础,代表复杂的数据分布,同时调和预测以确保一致性。 与其他最先进的方法不同,我们同时实现预测与和解,而不需要任何明确的后处理步骤。此外,通过利用深层模型的力量,我们并不依赖任何假设,如无偏颇的估计或高斯分布。我们的评价实验是在四个来自不同工业领域的真实世界等级数据集(三个公共数据集和Alipaay数据中心应用服务器的数据集)上进行的,以及初步结果显示了我们拟议方法的功效。