An important task in the study of fast radio bursts (FRBs) remains the automatic classification of repeating and non-repeating sources based on their morphological properties. We propose a statistical model that considers a modified logistic regression to classify FRB sources. The classical logistic regression model is modified to accommodate the small proportion of repeaters in the data, a feature that is likely due to the sampling procedure and duration and is not a characteristic of the population of FRB sources. The weighted logistic regression hinges on the choice of a tuning parameter that represents the true proportion $\tau$ of repeating FRB sources in the entire population. The proposed method has a sound statistical foundation, direct interpretability, and operates with only 5 parameters, enabling quicker retraining with added data. Using the CHIME/FRB Collaboration sample of repeating and non-repeating FRBs and numerical experiments, we achieve a classification accuracy for repeaters of nearly 75\% or higher when $\tau$ is set in the range of $50$ to $60$\%. This implies a tentative high proportion of repeaters, which is surprising, but is also in agreement with recent estimates of $\tau$ that are obtained using other methods.
翻译:暂无翻译