This paper considers minimax optimization $\min_x \max_y f(x, y)$ in the challenging setting where $f$ can be both nonconvex in $x$ and nonconcave in $y$. Though such optimization problems arise in many machine learning paradigms including training generative adversarial networks (GANs) and adversarially robust models, many fundamental issues remain in theory, such as the absence of efficiently computable optimality notions, and cyclic or diverging behavior of existing algorithms. Our framework sprouts from the practical consideration that under a computational budget, the max-player can not fully maximize $f(x,\cdot)$ since nonconcave maximization is NP-hard in general. So, we propose a new algorithm for the min-player to play against smooth algorithms deployed by the adversary (i.e., the max-player) instead of against full maximization. Our algorithm is guaranteed to make monotonic progress (thus having no limit cycles), and to find an appropriate "stationary point" in a polynomial number of iterations. Our framework covers practical settings where the smooth algorithms deployed by the adversary are multi-step stochastic gradient ascent, and its accelerated version. We further provide complementing experiments that confirm our theoretical findings and demonstrate the effectiveness of the proposed approach in practice.
翻译:本文考虑了在具有挑战性的环境中, 美元( x, y) 和美元( y, y) 的微缩最大优化 $\ min_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxy$y。 尽管在许多机器学习范式中, 包括培训基因对抗网络( GANs) 和对抗性强强的模型中, 出现了这种优化问题, 但理论上还存在许多基本问题, 比如缺少高效可比较的最佳概念, 以及现有算法的周期性或差异性行为。 我们的算法从实际考虑中产生了一些问题: 在计算预算下, 最大玩家不能完全最大化, 最大玩家不能完全最大化 。 我们的计算法从实际考虑中找到一个适当的“ 固定点 ” $f(x,\\ cddotot) $(x, 因为非cdot) $( $) 最大限度最大化一般是 NPPPP- hard- hard 硬。 因此, 我们所部署的理论化的模型可以提供更平稳的加速的加速的模型的模型的模型的模拟。