The activation function plays a fundamental role in the artificial neural network learning process. However, there is no obvious choice or procedure to determine the best activation function, which depends on the problem. This study proposes a new artificial neuron, named global-local neuron, with a trainable activation function composed of two components, a global and a local. The global component term used here is relative to a mathematical function to describe a general feature present in all problem domain. The local component is a function that can represent a localized behavior, like a transient or a perturbation. This new neuron can define the importance of each activation function component in the learning phase. Depending on the problem, it results in a purely global, or purely local, or a mixed global and local activation function after the training phase. Here, the trigonometric sine function was employed for the global component and the hyperbolic tangent for the local component. The proposed neuron was tested for problems where the target was a purely global function, or purely local function, or a composition of two global and local functions. Two classes of test problems were investigated, regression problems and differential equations solving. The experimental tests demonstrated the Global-Local Neuron network's superior performance, compared with simple neural networks with sine or hyperbolic tangent activation function, and with a hybrid network that combines these two simple neural networks.
翻译:激活功能在人工神经网络学习过程中具有根本作用 。 但是, 没有明显的选择或程序可以确定最佳激活功能, 而这取决于问题 。 本研究提出一个新的人工神经神经元, 名为全球- 本地神经元, 由两个部分组成, 包括全球和本地两个部分。 这里使用的全球元件与描述所有问题领域存在的一般特征的数学函数有关。 本地元件可以代表局部行为, 比如瞬变或扰动。 这个新的神经元件可以定义学习阶段每个激活功能组成部分的重要性 。 根据问题, 它产生一个纯全球性的、 纯粹的本地的或混合的全球和地方的激活功能 。 这里, 三角正弦功能用于全球元件, 和本地元件的超正弦值 。 拟议的神经元是针对目标纯粹的全球函数, 或纯本地功能, 或两个全球和地方函数的构成 。 两个测试问题类别 测试问题被调查过, 回归问题和差异等式的等式 。 实验性测试显示全球正态网络的性, 与简单的正态网络, 与简单的正态网络, 演示性网络, 演示了全球- 和正态网络的双色网络,, 和正态网络的同步网络的运行, 演示性网络 演示 演示, 演示 演示 演示,, 与简单的网络 演示 演示 演示 演示 演示 和双感动 。