We analyze self-dual polyhedral cones and prove several properties about their slack matrices. In particular, we show that self-duality is equivalent to the existence of a positive semidefinite (PSD) slack. Beyond that, we show that if the underlying cone is irreducible, then the corresponding PSD slacks are not only doubly nonnegative matrices (DNN) but are extreme rays of the cone of DNN matrices, which correspond to a family of extreme rays not previously described. More surprisingly, we show that, unless the cone is simplicial, PSD slacks not only fail to be completely positive matrices but they also lie outside the cone of completely positive semidefinite matrices. Finally, we show how one can use semidefinite programming to probe the existence of self-dual cones with given combinatorics. Our results are given for polyhedral cones but we also discuss some consequences for negatively self-polar polytopes.
翻译:我们分析自成一体的多面形锥体, 并证明它们关于松动矩阵的几种特性。 特别是, 我们显示自我质量相当于存在正半无线( PSD) 松懈。 此外, 我们显示, 如果基锥体不可减少, 那么相应的私营部门司松懈不仅是双非负基质( DNN), 而且是DNN矩阵锥体的极端光谱, 这与以前没有描述过的极端射线大家庭相对应。 更令人惊讶的是, 我们显示, 除非锥体是简单化的, 私营部门司的松懈不仅不能完全呈阳性矩阵, 而且它们也处于完全正半无线矩阵的锥体之外。 最后, 我们显示, 如何使用半无线编程来探索与给定的组合体的自成一体锥体的存在。 我们的结果是针对多面锥体锥体的, 但我们也讨论了对负自极多面多面形体的一些后果。