The severity of multivariate extreme events is driven by the dependence between the largest marginal observations. The H\"usler-Reiss distribution is a versatile model for this extremal dependence, and it is usually parameterized by a variogram matrix. In order to represent conditional independence relations and obtain sparse parameterizations, we introduce the novel H\"usler-Reiss precision matrix. Similarly to the Gaussian case, this matrix appears naturally in density representations of the H\"usler-Reiss Pareto distribution and encodes the extremal graphical structure through its zero pattern. For a given, arbitrary graph we prove the existence and uniqueness of the completion of a partially specified H\"usler-Reiss variogram matrix so that its precision matrix has zeros on non-edges in the graph. Using suitable estimators for the parameters on the edges, our theory provides the first consistent estimator of graph structured H\"usler-Reiss distributions. If the graph is unknown, our method can be combined with recent structure learning algorithms to jointly infer the graph and the corresponding parameter matrix. Based on our methodology, we propose new tools for statistical inference of sparse H\"usler-Reiss models and illustrate them on large flight delay data in the U.S.
翻译:多变量极端事件的严重性是由最大的边际观测之间的依赖性驱动的。 H\'usler-Reiss-Reiss 分布是这一极端依赖性的一个多功能模型,通常由变量矩阵参数参数参数来参数化。为了代表有条件的独立关系并获得稀疏参数化,我们引入了新颖的 H\'usler-Reiss 精确矩阵。与Gaussian 一样,这个矩阵在H\'usler-Reiss Pareto 分布和通过零模式编码极端图形结构的密度表示中自然出现。对于一个特定、任意的图形,我们证明部分指定的 H\'usler-Reiss 变量矩阵的完成存在和独特性,以便其精确矩阵在图形中的非边缘位置上为零。我们用合适的估计器为图形结构的 H\\ usler- Reiss 分布提供了第一个一致的估算器。如果该图形为未知,我们的方法可以与最近的结构学习算法结合起来,以共同推导出图表中的大型飞行模型和对应的参数矩阵。