In this paper, a nonsmooth semilinear parabolic partial differential equation (PDE) is considered. For a reduced basis (RB) approach, a space-time formulation is used to develop a certified a-posteriori error estimator. This error estimator is adopted to the presence of the discrete empirical interpolation method (DEIM) as approximation technique for the nonsmoothness. The separability of the estimated error into an RB and a DEIM part then guides the development of an adaptive RB-DEIM algorithm, combining both offline phases into one. Numerical experiments show the capabilities of this novel approach in comparison with classical RB and RB-DEIM approaches.
翻译:在本文中,考虑的是非悬浮半线性半线性半线性部分差分方程(PDE),在缩小基数(RB)方法中,使用时空配方法来开发一个经核证的外在误差估计器。这一误差估计器被采用到离散的经验内插法(DEIM)作为非均匀的近似技术。估计误差可分离成一个RB和DEIM部分,然后指导适应性RB-DEIM算法的发展,将两个离线阶段合并为一个阶段。数字实验表明,与典型RB和RB-DEIM方法相比,这种新颖方法的能力。