As we move to increasingly complex cyber-physical systems (CPS), new approaches are needed to plan efficient state trajectories in real-time. In this paper, we propose an approach to significantly reduce the complexity of solving optimal control problems for a class of CPS with nonlinear dynamics. We exploit the property of differential flatness to simplify the Euler-Lagrange equations that arise during optimization, and this simplification eliminates the numerical instabilities that plague optimal control in general. We also present an explicit differential equation that describes the evolution of the optimal state trajectory, and we extend our results to consider both the unconstrained and constrained cases. Furthermore, we demonstrate the performance of our approach by generating the optimal trajectory for a 2D crane system. We show in simulation that our approach is able to generate the unconstrained optimal trajectory in 1.5 ms and a constrained optimal trajectory in 184 ms.
翻译:随着我们进入日益复杂的网络物理系统(CPS),需要新的方法来规划高效的实时状态轨迹。在本文中,我们提出一个方法,以大幅降低解决具有非线性动态的CPS类别最佳控制问题的复杂性。我们利用差异平坦的特性来简化优化期间产生的尤勒-拉格朗方程,这种简化消除了总体最佳控制所困扰的数字不稳定性。我们还提出了一个明确的差别方程式,描述最佳状态轨迹的演变,我们把结果扩大到考虑未受限制和受限制的情况。此外,我们通过为2D起重系统创造最佳轨迹,展示了我们方法的绩效。我们在模拟中显示,我们的方法能够产生1.5米的未受限制的最佳轨迹和184米的受限制的最佳轨迹。