The ParaDiag family of algorithms solves differential equations by using preconditioners that can be inverted in parallel through diagonalization. In the context of optimal control of linear parabolic PDEs, the state-of-the-art ParaDiag method is limited to solving self-adjoint problems with a tracking objective. We propose three improvements to the ParaDiag method: the use of alpha-circulant matrices to construct an alternative preconditioner, a generalization of the algorithm for solving non-self-adjoint equations, and the formulation of an algorithm for terminal-cost objectives. We present novel analytic results about the eigenvalues of the preconditioned systems for all discussed ParaDiag algorithms in the case of self-adjoint equations, which proves the favorable properties the alpha-circulant preconditioner. We use these results to perform a theoretical parallel-scaling analysis of ParaDiag for self-adjoint problems. Numerical tests confirm our findings and suggest that the self-adjoint behavior, which is backed by theory, generalizes to the non-self-adjoint case. We provide a sequential, open-source reference solver in Matlab for all discussed algorithms.
翻译:Para Diag 算法组通过使用可以通过二进制平行倒转的前提方程式解决差异方程式。在对线性抛物面 PDE 进行最佳控制的背景下,最先进的 Para Diag 方法仅限于解决自我联合问题,并有一个跟踪目标。我们建议对 Para Diag 方法作三项改进:使用阿尔法-circurant 矩阵来构建一个替代性先决条件,对解决非自我联合方程式的算法进行概括化,并为最终成本目标制定一种算法。我们在自我联合方程式中为所有讨论过的Para Diag 预设系统提供新的分析结果,这证明了阿尔法-circurant 先决条件的有利性质。我们用这些结果对Para Diag 进行理论平行计算分析,以解决自我联合问题。Numerical 测试证实了我们的调查结果,并建议以理论为后盾的自我联合行为,对非自我联合方程式进行概括性分析。我们在Mat-mal-commol 中提供了一个连续性分析。