Complete depth information and efficient estimators have become vital ingredients in scene understanding for automated driving tasks. A major problem for LiDAR-based depth completion is the inefficient utilization of convolutions due to the lack of coherent information as provided by the sparse nature of uncorrelated LiDAR point clouds, which often leads to complex and resource-demanding networks. The problem is reinforced by the expensive aquisition of depth data for supervised training. In this work, we propose an efficient depth completion model based on a vgg05-like CNN architecture and propose a semi-supervised domain adaptation approach to transfer knowledge from synthetic to real world data to improve data-efficiency and reduce the need for a large database. In order to boost spatial coherence, we guide the learning process using segmentations as additional source of information. The efficiency and accuracy of our approach is evaluated on the KITTI dataset. Our approach improves on previous efficient and low parameter state of the art approaches while having a noticeably lower computational footprint.
翻译:完整的深度信息和高效的测算器已成为对自动化驾驶任务进行现场了解的关键因素。利达雷达的深度完成的一个主要问题是,由于与利达雷达不相干点云的稀少性质,往往导致网络的复杂和资源需求,因此缺乏一致的信息,因此没有有效地利用各种变化,这往往导致网络的复杂和资源需求。为监督培训提供昂贵的深度数据,使问题更加严重。在这项工作中,我们提出了一个基于类似有线电视新闻网结构的高效深度完成模型,并提议一种半受监督的域适应方法,将知识从合成数据转移到真实世界数据,以提高数据效率和减少对大型数据库的需求。为了提高空间一致性,我们用分块作为补充信息来源指导学习过程。我们的方法的效率和准确性在KITTI数据集上得到了评估。我们的方法改进了艺术方法以前的效率和低参数状态,同时明显降低了计算足迹。