项目名称: 基于贵金属纳米簇的受激发射损耗超分辨显微镜荧光探针的设计和成像
项目编号: No.21503271
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 王富
作者单位: 中国科学院新疆理化技术研究所
项目金额: 21万元
中文摘要: 受激发射损耗超分辨荧光(STED)显微镜是第一种突破光学衍射极限的超分辨显微技术,经过二十年的发展,已日趋成熟。但是由于所用荧光探针在性能和种类方面的发展滞后,目前使用STED显微镜进行实际研究的分辨率仅有30 nm且局限于生物医学领域。本项目选用小尺寸、低毒性、光谱易调控的贵金属纳米簇作为新型STED荧光探针材料,通过优化反应路线与条件,制备高量子产率、高稳定性的贵金属纳米簇,使STED显微镜的分辨率提高到15nm,为其应用领域的拓展奠定基础。通过进一步对贵金属纳米簇进行表面修饰改性或形成复合物,设计对光催化反应过程中的光生电子-空穴、自由基或氧化还原物质具有荧光开关或变色响应的特异性STED探针,并用于单粒子光催化反应活性中心的超分辨定位和监测。结合其它常规表征手段,揭示催化剂尺寸、形貌、晶面微观结构与光活性的关系,为光催化微观过程的理解提供支撑。
中文关键词: 荧光分子探针;荧光成像;超高分辨率荧光显微镜;单分子荧光;光催化反应
英文摘要: STimulated Emission Depletion (STED) microscopy is the first technique breaking the diffraction barrier and providing sub-diffraction resolution. After 20 years continuous development, significant progression has been achieved. However, as the limitation of property and quantity, only 30 nm resolution has been realized in real application and mainly restricted in the area of biology and medicine. We proposed in this project to use the noble metal cluster as a novel STED probe due to its small size, low toxic and tunable spectral. We will focus on the synthesis of highly fluorescent and stable noble metal cluster by optimizing the synthetic method, parameter and etc. Benefit from the new probe, higher resolution (15 nm) will be reached and broader research area will be stimulated. Furthermore, the surface and optical property can be modified via using the common chemistry methods or forming conjugation complex. Thus, the functionalized noble metal cluster will have the property of specifically recognize the photon generated electron-hole, free radicals and oxidation-reduction species through the fluorescence off-on or spectral shift effects. With the prepared STED probe, we will localize catalytic active site and monitor the reaction process on single catalyst using the STED microscopy. Combining other traditional characterization methods, the relationship between the particle size, morphology, crystal surface microstructure and the photo-generated charge transfer behavior and photoactivity will be systematically studied. More profound understanding of the microscopic physical and chemical processes involved in photocatalysis will be gained through this project.
英文关键词: Fluorescent molecular probe;Fluorescent imaging;Super resolution microscopy;Single molecular fluorescence;Photocatalysis reaction