Convolutional Neural Networks (CNNs) have a large number of parameters and take significantly large hardware resources to compute, so edge devices struggle to run high-level networks. This paper proposes a novel method to reduce the parameters and FLOPs for computational efficiency in deep learning models. We introduce accuracy and efficiency coefficients to control the trade-off between the accuracy of the network and its computing efficiency. The proposed Rewarded meta-pruning algorithm trains a network to generate weights for a pruned model chosen based on the approximate parameters of the final model by controlling the interactions using a reward function. The reward function allows more control over the metrics of the final pruned model. Extensive experiments demonstrate superior performances of the proposed method over the state-of-the-art methods in pruning ResNet-50, MobileNetV1, and MobileNetV2 networks.
翻译:革命神经网络(CNNs)有许多参数,并需要大量硬件资源来进行计算,因此边缘装置要努力运行高级网络。本文提出了减少深层学习模型计算效率参数和FLOPs的新颖方法。我们引入了精确度和效率系数来控制网络精确度与其计算效率之间的取舍。拟议的奖励元运行算法对一个网络进行了培训,以便通过利用奖励功能控制最终模型的近似参数来为根据最后模型的近似参数选择的剪裁模型生成重量。奖励功能使得能够对最终倾斜模型的度量进行更大的控制。广泛的实验表明,拟议的方法优于PRODNet-50、MobileNetV1和MobileNetV2网络中最先进的方法。