The partially observed linear Gaussian system of stochastic differential equations with low noise in observations is considered. A kernel-type estimators are used for estimation of the quadratic variation of the derivative of the limit of the observed process. Then this estimator is used for nonparametric estimation of the integral of the square of volatility of unobservable component. This estimator is also used for construction of substitution estimators in the case where the drift in observable component and the volatility of the state component depend on some unknown parameter. Then this substitution estimator and Fisher-score device allows us to introduce the One-step MLE-process and adaptive Kalman-Bucy filter.
翻译:考虑的是观测中观察到的具有低噪声的局部直线高斯方程式系统;用于估计所观测过程极限衍生物的二次变异的内核型估计器;然后,该估计器用于对不可观测部件挥发性方块的构成部分进行非参数性估计。在可观测部件的漂移和国家组成部分的波动取决于一些未知参数的情况下,该估计器也用于建造替代估计器。然后,这一替代估计器和渔场核心设备允许我们引入单步 MLE-进程和适应性Kalman-Bucy过滤器。