We derive asymptotic properties of penalized estimators for singular models for which identifiability may break and the true parameter values can lie on the boundary of the parameter space. Selection consistency of the estimators is also validated. The problem that the true values lie on the boundary is dealt with by our previous results that are applicable to singular models, besides, penalized estimation and non-ergodic statistics. In order to overcome non-identifiability, we consider a suitable penalty such as the non-convex Bridge and the adaptive Lasso that stabilizes the asymptotic behavior of the estimator and shrinks inactive parameters. Then the estimator converges to one of the most parsimonious values among all the true values. In particular, the oracle property can also be obtained even if parametric structure of the singular model is so complex that likelihood ratio tests for model selection are labor intensive to perform. Among many potential applications, the examples handled in the paper are: (i) the superposition of parametric proportional hazard models and (ii) a counting process having intensity with multicollinear covariates.
翻译:为了克服不可识别性,我们从受罚的测算器中得出一种适当的惩罚性特性,例如非convex桥和适应性激光索,它们稳定了测算器的无干扰行为,并缩小了不活动参数的参数。然后,估计器的选定一致性也得到了验证。在边界上真实值的问题由我们以前适用于单模型的结果处理,此外,受罚的估计值和非结果也是受罚的。为了克服不可识别性,我们考虑一种适当的惩罚,例如非convex桥和适应性激光索,它们稳定了测算器的无干扰行为,并缩小了非活动参数。然后,估计器与所有真实值中最相似的值之一汇合。特别是,即使单模型的参数结构非常复杂,用于选择模型的概率比重测试是劳动密集型的,也可以取得标定属性。许多潜在应用中,本文处理的例子有:(一)比对称比例危害模型的超置式定位,以及(二)与多相线共坐的计算过程强度。