Model compression is an essential technique for deploying deep neural networks (DNNs) on power and memory-constrained resources. However, existing model-compression methods often rely on human expertise and focus on parameters' local importance, ignoring the rich topology information within DNNs. In this paper, we propose a novel multi-stage graph embedding technique based on graph neural networks (GNNs) to identify the DNNs' topology and use reinforcement learning (RL) to find a suitable compression policy. We performed resource-constrained (i.e., FLOPs) channel pruning and compared our approach with state-of-the-art compression methods using over-parameterized DNNs (e.g., ResNet and VGG-16) and mobile-friendly DNNs (e.g., MobileNet and ShuffleNet). We evaluated our method on various models from typical to mobile-friendly networks, such as ResNet family, VGG-16, MobileNet-v1/v2, and ShuffleNet. The results demonstrate that our method can prune dense networks (e.g., VGG-16) by up to 80% of their original FLOPs. More importantly, our method outperformed state-of-the-art methods and achieved a higher accuracy by up to 1.84% for ShuffleNet-v1. Furthermore, following our approach, the pruned VGG-16 achieved a noticeable 1.38$\times$ speed up and 141 MB GPU memory reduction.


翻译:模型压缩是部署精密神经网络(DNN)的动力和记忆受限制的资源的关键技术。然而,现有的模型压缩方法往往依赖人的专门知识,并侧重于参数在当地的重要性,忽视DNN的丰富地形信息。在本文中,我们提出基于图形神经网络(GNN)的新型多阶段图形嵌入技术,以识别DNN的地形学,并利用强化学习(RL)找到合适的压缩政策。我们实施了资源限制(即FLOPs)的频道运行,并将我们的方法与使用超分式数字网络(例如ResNet和VGG-16)和移动式友好型数字网络(例如移动网络和ShuffleleNet)的先进压缩方法相比较。我们用的是资源限制(即FGNF-16)的透明化方法,我们的方法可以快速更新成本网络(e.g.Net和VGG-16),从而实现我们184%的原始的降低成本方法。

0
下载
关闭预览

相关内容

首篇「课程学习(Curriculum Learning)」2021综述论文
专知会员服务
50+阅读 · 2021年1月31日
[ICML-Google]先宽后窄:对深度薄网络的有效训练
专知会员服务
36+阅读 · 2020年7月5日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
60+阅读 · 2020年5月9日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
近期必读的5篇 WSDM 2020【图神经网络(GNN)】相关论文
专知会员服务
57+阅读 · 2020年1月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Compression of Deep Learning Models for Text: A Survey
Graph Transformer for Graph-to-Sequence Learning
Arxiv
4+阅读 · 2019年11月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Representation Learning on Network 网络表示学习
全球人工智能
10+阅读 · 2017年10月19日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Top
微信扫码咨询专知VIP会员