We study network pruning which aims to remove redundant channels/kernels and hence speed up the inference of deep networks. Existing pruning methods either train from scratch with sparsity constraints or minimize the reconstruction error between the feature maps of the pre-trained models and the compressed ones. Both strategies suffer from some limitations: the former kind is computationally expensive and difficult to converge, while the latter kind optimizes the reconstruction error but ignores the discriminative power of channels. In this paper, we propose a simple-yet-effective method called discrimination-aware channel pruning (DCP) to choose the channels that actually contribute to the discriminative power. Note that a channel often consists of a set of kernels. Besides the redundancy in channels, some kernels in a channel may also be redundant and fail to contribute to the discriminative power of the network, resulting in kernel level redundancy. To solve this, we propose a discrimination-aware kernel pruning (DKP) method to further compress deep networks by removing redundant kernels. To prevent DCP/DKP from selecting redundant channels/kernels, we propose a new adaptive stopping condition, which helps to automatically determine the number of selected channels/kernels and often results in more compact models with better performance. Extensive experiments on both image classification and face recognition demonstrate the effectiveness of our methods. For example, on ILSVRC-12, the resultant ResNet-50 model with 30% reduction of channels even outperforms the baseline model by 0.36% in terms of Top-1 accuracy. The pruned MobileNetV1 and MobileNetV2 achieve 1.93x and 1.42x inference acceleration on a mobile device, respectively, with negligible performance degradation. The source code and the pre-trained models are available at https://github.com/SCUT-AILab/DCP.


翻译:我们研究网络修剪方法,目的是清除多余的通道/内核,从而加快深网络的发酵。现有的修剪方法要么从零到零到零到零到零到零到零到零到零到零到零到零到零到零到零到零到零到零到零,或者将预培训模型和压缩模型之间的重建错误降到最小。两种战略都有一定的局限性:前者在计算上成本昂贵,难以汇合,而后者则优化重建错误,但忽略了频道的歧视性力量。在本文中,我们提议一种简单到零到零效果的方法,称为歧视到零到零到零的频道(DCP), 选择真正有助于有区别的频道。除了频道冗余之外,有些频道的内核也可能是多余的,未能促进网络的歧视性力量,导致内核层的冗余。为了解决这个问题,我们建议一种有歧视的内核模型(DKP)用来通过删除冗余的内核,进一步压缩深网络。1.要防止DCP/DKP选择一套50至零的内核的内核的内核内核的内核的内核的内核的内存。我们建议一个更好的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存,用来的内存的内存的内存的内存的内存的内核的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存的内存,

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
16+阅读 · 2020年4月28日
专知会员服务
162+阅读 · 2020年1月16日
MIT新书《强化学习与最优控制》
专知会员服务
278+阅读 · 2019年10月9日
BERT 瘦身之路:Distillation,Quantization,Pruning
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Compression of Deep Learning Models for Text: A Survey
Arxiv
5+阅读 · 2019年6月5日
A Compact Embedding for Facial Expression Similarity
Arxiv
5+阅读 · 2018年5月21日
VIP会员
相关资讯
BERT 瘦身之路:Distillation,Quantization,Pruning
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员