Piecewise Linear Interface Construction (PLIC) is frequently used to geometrically reconstruct fluid interfaces in Computational Fluid Dynamics (CFD) modeling of two-phase flows. PLIC reconstructs interfaces from a scalar field that represents the volume fraction of each phase in each computational cell. Given the volume fraction and interface normal, the location of a linear interface is uniquely defined. For a cubic computational cell (3D), the position of the planar interface is determined by intersecting the cube with a plane, such that the volume of the resulting truncated polyhedron cell is equal to the volume fraction. Yet it is geometrically complex to find the exact position of the plane, and it involves calculations that can be a computational bottleneck of many CFD models. However, while the forward problem of 3D PLIC is challenging, the inverse problem, of finding the volume of the truncated polyhedron cell given a defined plane, is simple. In this work, we propose a deep learning model for the solution to the forward problem of PLIC by only making use of its inverse problem. The proposed model is up to several orders of magnitude faster than traditional schemes, which significantly reduces the computational bottleneck of PLIC in CFD simulations.
翻译:粒子线性界面构造 (PLIC) 常用于几何重建两个阶段流流计算模型中的流体界面。 PLIC 从代表每个计算单元格中每个阶段的体积分数的星标字段中重建界面。 鉴于量分数和界面的正常,线性界面的位置是独特的。 对于一个立方计算单元格(3D), 平面界面的位置是通过将立方体与一平面交叉决定的, 从而导致的短曲流聚希德龙细胞的体积与体积分相等。 然而, 找到该平面的确切位置是几何几何复杂的。 它包含计算, 可能是许多计算单元格单元的计算瓶颈。 然而, 虽然3D PLIC的前沿问题具有挑战性, 找到给定方平面的圆性聚赫德细胞的体体积的反向问题很简单。 在这项工作中, 我们提议一个深度学习模型, 解决 PLICIC 前方问题的方法是等量的体积体积。 但是, 仅通过使用其传统的CFD 模型, 将一些反向的量的模型降低。