Most of the existing visual SLAM methods heavily rely on a static world assumption and easily fail in dynamic environments. Some recent works eliminate the influence of dynamic objects by introducing deep learning-based semantic information to SLAM systems. However such methods suffer from high computational cost and cannot handle unknown objects. In this paper, we propose a real-time semantic RGB-D SLAM system for dynamic environments that is capable of detecting both known and unknown moving objects. To reduce the computational cost, we only perform semantic segmentation on keyframes to remove known dynamic objects, and maintain a static map for robust camera tracking. Furthermore, we propose an efficient geometry module to detect unknown moving objects by clustering the depth image into a few regions and identifying the dynamic regions via their reprojection errors. The proposed method is evaluated on public datasets and real-world conditions. To the best of our knowledge, it is one of the first semantic RGB-D SLAM systems that run in real-time on a low-power embedded platform and provide high localization accuracy in dynamic environments.
翻译:现有的视觉 SLM 方法大多主要依赖于静态的世界假设,在动态环境中很容易失败。最近的一些工程通过向SLAM系统引入深层次学习的语义信息,消除了动态物体的影响。但是,这些方法具有很高的计算成本,无法处理未知的物体。在本文中,我们建议为能够探测已知和未知移动物体的动态环境建立一个实时语义 RGB-D SLAM 系统。为了降低计算成本,我们只能在关键框架上进行语义分割,以删除已知的动态物体,并维持一个静态的相机跟踪地图。此外,我们提议了一个高效的几何学模块,通过将深度图像嵌入几个区域,并通过其重新预测错误来识别动态区域,来探测未知移动物体。拟议方法根据公共数据集和真实世界条件进行评估。据我们所知,这是在低能量嵌入平台上实时运行的第一个语义 RGB-D SLM 系统之一,并在动态环境中提供高度的本地化精度。