Soft robotic fingers can safely grasp fragile or variable form objects, but their force capacity is limited, especially with less contact area: precision grasps and when objects are smaller or not spherical. Current research is improving force capacity through mechanical design by increasing contact area or stiffness, typically without models which explain soft finger force limitations. To address this, this paper considers two types of soft grip failure, slip and dynamic rotational stability. For slip, the validity of a Coulomb model investigated, identifying the effect of contact area, pressure, and relative pose. For rotational stability, bulk linear stiffness of the fingers is used to develop conditions for dynamic stability and identify when rotation leads to slip. Together, these models suggest contact area improves force capacity by increasing transverse stiffness and normal force. The models are validated on pneumatic fingers, both custom PneuNets-based and commercially available. The models are used to find grip parameters which increase force capacity without failure.
翻译:暂无翻译