The aim of this paper is to discuss an estimation and a simulation method in the \textsf{R} package YUIMA for a linear regression model driven by a Student-$t$ L\'evy process with constant scale and arbitrary degrees of freedom. This process finds applications in several fields, for example finance, physic, biology, etc. The model presents two main issues. The first is related to the simulation of a sample path at high-frequency level. Indeed, only the $t$-L\'evy increments defined on an unitary time interval are Student-$t$ distributed. In YUIMA, we solve this problem by means of the inverse Fourier transform for simulating the increments of a Student-$t$ L\'{e}vy defined on a interval with any length. A second problem is due to the fact that joint estimation of trend, scale, and degrees of freedom does not seem to have been investigated as yet. In YUIMA, we develop a two-step estimation procedure that efficiently deals with this issue. Numerical examples are given in order to explain methods and classes used in the YUIMA package.
翻译:暂无翻译