Many applications require the calculation of integrals of multidimensional functions. A general and popular procedure is to estimate integrals by averaging multiple evaluations of the function. Often, each evaluation of the function entails costly computations. The use of a \emph{proxy} or surrogate for the true function is useful if repeated evaluations are necessary. The proxy is even more useful if its integral is known analytically and can be calculated practically. We propose the use of a versatile yet simple class of artificial neural networks -- sigmoidal universal approximators -- as a proxy for functions whose integrals need to be estimated. We design a family of fixed networks, which we call Q-NETs, that operate on parameters of a trained proxy to calculate exact integrals over \emph{any subset of dimensions} of the input domain. We identify transformations to the input space for which integrals may be recalculated without resampling the integrand or retraining the proxy. We highlight the benefits of this scheme for a few applications such as inverse rendering, generation of procedural noise, visualization and simulation. The proposed proxy is appealing in the following contexts: the dimensionality is low ($<10$D); the estimation of integrals needs to be decoupled from the sampling strategy; sparse, adaptive sampling is used; marginal functions need to be known in functional form; or when powerful Single Instruction Multiple Data/Thread (SIMD/SIMT) pipelines are available for computation.
翻译:许多应用程序都要求计算多功能的集成。一般和流行的程序是,通过平均对函数进行多重评价来估计集成。通常,对函数的每次评价都需要花费昂贵的计算。如果需要反复评价,使用 emph{ proxy} 或代理器来计算真实函数是有用的。如果从分析角度了解其集成,并且可以实际计算,则代理就更加有用。我们提议使用多功能而简单的一类人工神经网络 -- -- 模拟和通用近似器 -- -- 作为需要估计其集成的函数的代用。我们设计了一组固定网络,我们称之为Q-NETs,根据经过训练的代理的参数来计算输入域域域的精密整体成份。我们确定对输入空间的转换可能更加有用,而不必重新标注缩放缩放或再校正。我们强调这一计划对一些应用的好处,例如反演化、生成程序噪音、可视化和模拟等。我们称之为Q-NET的固定网络。在以下背景下,拟议的代理功能的参数具有吸引力:取样需要低度的模型到最低的代位值。