One can elucidate integrability properties of ordinary differential equations (ODEs) by knowing the existence of second integrals (also known as weak integrals or Darboux polynomials for polynomial ODEs). However, little is known about how they are preserved, if at all, under numerical methods. Here, we show that in general all Runge-Kutta methods will preserve all affine second integrals but not (irreducible) quadratic second integrals. A number of interesting corollaries are discussed, such as the preservation of certain rational integrals by arbitrary Runge-Kutta methods. We also study the special case of affine second integrals with constant cofactor and discuss the preservation of affine higher integrals.
翻译:通过了解存在第二个整体体(也称为弱整体体或多分子体的Darbouux多元复合体),人们可以解释普通差分方体(ODEs)的融合性特性。然而,对于它们如何被保存,如果保存的话,在数字方法下却知之甚少。在这里,我们表明,所有龙格-库塔方法一般都会保存所有同系物的第二个整体体,但不会保存(不可减损的)第二个二次整体体。我们讨论了一些有趣的卷曲,例如通过任意的Runge-库塔方法保存某些理性整体体。我们还研究与常同系物相连的第二个个体体的特殊案例,并讨论保护更高方块的第二个整体体。