In this article we study intrusive uncertainty quantification schemes for systems of conservation laws with uncertainty. Standard intrusive methods lead to oscillatory solutions which sometimes even cause the loss of hyperbolicity. We consider the stochastic Galerkin scheme, in which we filter the coefficients of the polynomial expansion in order to reduce oscillations. We further apply the multi-element approach and ensure the preservation of hyperbolic solutions through the hyperbolicity limiter. In addition to that, we study the intrusive polynomial moment method, which guarantees hyperbolicity at the cost of solving an optimization problem in every spatial cell and every time step. To reduce numerical costs, we apply the multi-element ansatz to IPM. This ansatz decouples the optimization problems of all multi elements. Thus, we are able to significantly decrease computational costs while improving parallelizability. We finally evaluate these oscillation mitigating approaches on various numerical examples such as a NACA airfoil and a nozzle test case for the two-dimensional Euler equations. In our numerical experiments, we observe the mitigation of spurious artifacts. Furthermore, using the multi-element ansatz for IPM significantly reduces computational costs.
翻译:在文章中,我们研究具有不确定性的保护法体系的侵入性不确定性量化办法; 标准侵入方法导致螺旋式解决办法,有时甚至导致超偏差的丧失; 我们考虑Stochantic Galerkin办法,我们通过这个办法过滤多元扩张系数,以减少振动; 我们进一步采用多元素办法,并通过超偏差限制确保保护双曲溶液; 此外,我们研究侵入性多球形瞬时法,这种方法保证双向性,费用是解决每个空间细胞和每个步骤的优化问题; 为了降低数字成本,我们将多元素 anaztz 应用到IPM 。 这个 antaz 解析了所有多元素的优化问题。 因此,我们能够大幅降低计算成本,同时改进平行性。 最后,我们评估了这些振动法,例如NACA Afoil和二维 Euler方程式的喷嘴试验案例。 在我们的数字实验中,我们用多元素解析法,我们用大量测量了悬浮的计算成本。