Explainability is a key requirement for computer-aided diagnosis systems in clinical decision-making. Multiple instance learning with attention pooling provides instance-level explainability, however for many clinical applications a deeper, pixel-level explanation is desirable, but missing so far. In this work, we investigate the use of four attribution methods to explain a multiple instance learning models: GradCAM, Layer-Wise Relevance Propagation (LRP), Information Bottleneck Attribution (IBA), and InputIBA. With this collection of methods, we can derive pixel-level explanations on for the task of diagnosing blood cancer from patients' blood smears. We study two datasets of acute myeloid leukemia with over 100 000 single cell images and observe how each attribution method performs on the multiple instance learning architecture focusing on different properties of the white blood single cells. Additionally, we compare attribution maps with the annotations of a medical expert to see how the model's decision-making differs from the human standard. Our study addresses the challenge of implementing pixel-level explainability in multiple instance learning models and provides insights for clinicians to better understand and trust decisions from computer-aided diagnosis systems.
翻译:在临床决策中,计算机辅助诊断系统的关键要求是可解释性。多例学习集中关注,可以提供实例一级的解释,但对于许多临床应用来说,更深的像素级解释是可取的,但迄今还缺少。在这项工作中,我们调查使用四种归因方法来解释多例学习模式:格拉德卡姆、图层-维兹相关性促进(LRP)、信息瓶颈归因(IBA)和投入型IBA。有了这套方法,我们就可以得出像素级解释,说明从病人的血液涂片中诊断血癌的任务。我们研究了两套具有10万多张单细胞图像的急性类血清血清数据集,并观察每种归因方法如何在多例学习结构上发挥作用,侧重于白血单细胞的不同特性。此外,我们比较归因图和医学专家的说明,看看模型的决策与人类标准有何不同之处。我们的研究探讨了在多个实例学习模型中执行等级解释性解释性的挑战,为临床医生提供深刻的见解,以便更好地了解和信任计算机分析系统的决定。</s>