In this paper, the rate-distortion theory of Gray-Wyner lossy source coding system is investigated. An iterative algorithm is proposed to compute rate-distortion function for general successive source. For the case of jointly Gaussian distributed sources, the Lagrangian analysis of scalable source coding in [1] is generalized to the Gray-Wyner instance. Upon the existing single-letter characterization of the rate-distortion region, we compute and determine an analytical expression of the rate-distortion function under quadratic distortion constraints. According to the rate-distortion function, another approach, different from Viswanatha et al. used, is provided to compute Wyner's Common Information. The convergence of proposed iterative algorithm, RD function with different parameters and the projection plane of RD region are also shown via numerical simulations at last.
翻译:在本文中,对格雷-怀内尔损失源编码系统的率扭曲理论进行了调查,建议对一般连续源进行迭代算法计算率扭曲功能。对于Gaussian分布源,对[1]中可缩放源编码的拉格朗加式分析被广泛推广到格雷-怀内尔实例中。在对率扭曲区域的现有单字母定性中,我们计算并确定了在二次扭曲限制下对率扭曲函数的分析表达。根据率扭曲功能,另一种与Viswanatha 等人不同的做法被提供给计算Wyner的共同信息。拟议的迭代算法、RD函数与不同参数和RD区域投影平面的趋同也通过数字模拟来显示。