We present a cost-efficient and versatile method to map an unknown 3D freeform surface using only sparse measurements while the end-effector of a robotic manipulator moves along the surface. The geometry is locally approximated by a plane, which is defined by measured points on the surface. The method relies on linear Kalman filters, estimating the height of each point on a 2D grid. Therefore, the approximation covariance for each grid point is determined using a radial basis function to consider the measured point positions. We propose different update strategies for the grid points exploiting the locality of the planar approximation in combination with a projection method. The approach is experimentally validated by tracking the surface with a robotic manipulator. Three laser distance sensors mounted on the end-effector continuously measure points on the surface during the motion to determine the approximation plane. It is shown that the surface geometry can be mapped reasonably accurate with a mean absolute error below 1 mm. The mapping error mainly depends on the size of the approximation area and the curvature of the surface.
翻译:我们提出了一个具有成本效益和多功能的方法来绘制未知的 3D 自由面,仅使用稀有的测量方法,而机器人操纵器的终端效应则沿着表面移动。 几何由平面近似于局部, 以表面测量点为定义。 该方法依赖于线性卡尔曼过滤器, 估计2D网格上每个点的高度。 因此, 每个网格点的近似共变差使用一个辐射基函数来确定所测量的点位置。 我们建议对电网点采用不同的更新策略, 利用平面近似的位置与投影方法相结合。 该方法通过用机械操纵器跟踪表面进行实验验证。 安装在末效或连续测量表面点的三个激光距离传感器在运动中, 以决定近光平面的平面。 这表明, 表面的几何测量方法可以用低于1毫米的绝对平均误差来进行合理精确的绘图。 绘图错误主要取决于近似区域大小和地表的曲度。