End-to-end optimization capability offers neural image compression (NIC) superior lossy compression performance. However, distinct models are required to be trained to reach different points in the rate-distortion (R-D) space. In this paper, we consider the problem of R-D characteristic analysis and modeling for NIC. We make efforts to formulate the essential mathematical functions to describe the R-D behavior of NIC using deep network and statistical modeling. Thus continuous bit-rate points could be elegantly realized by leveraging such model via a single trained network. In this regard, we propose a plugin-in module to learn the relationship between the target bit-rate and the binary representation for the latent variable of auto-encoder. Furthermore, we model the rate and distortion characteristic of NIC as a function of the coding parameter $\lambda$ respectively. Our experiments show our proposed method is easy to adopt and obtains competitive coding performance with fixed-rate coding approaches, which would benefit the practical deployment of NIC. In addition, the proposed model could be applied to NIC rate control with limited bit-rate error using a single network.
翻译:端到端优化能力可以提供神经图像压缩(NIC)超强损耗压缩性能。 但是,需要不同的模型来培训,以达到比率扭曲空间(R-D)的不同点。 在本文中,我们考虑NIC的R-D特征分析和建模问题。我们努力制定基本的数学函数来描述NIC使用深网络和统计模型的R-D行为。因此,通过利用单一的经过培训的网络来利用这种模型可以优雅地实现连续的位速率点。在这方面,我们提议了一个插件模块来了解目标位速率与自动编码器潜在变量的二进制代表之间的关系。此外,我们将NIC的速率和扭曲特征分别作为编码参数 $\lambda$ 的函数进行建模。我们的实验表明我们提议的方法很容易采用,并且获得使用固定节率编码方法的竞争性编码性能,这将有利于NIC的实际部署。此外,拟议的模型可以应用于NIC比率控制,使用单一网络的有限比特率错误。