Security attacks are rising, as evidenced by the number of reported vulnerabilities. Among them, unknown attacks, including new variants of existing attacks, technical blind spots or previously undiscovered attacks, challenge enduring security. This is due to the limited number of techniques that diagnose these attacks and enable the selection of adequate security controls. In this paper, we propose an automated technique that detects and diagnoses unknown attacks by identifying the class of attack and the violated security requirements, enabling the selection of adequate security controls. Our technique combines anomaly detection to detect unknown attacks with abductive reasoning to diagnose them. We first model the behaviour of the smart home and its requirements as a logic program in Answer Set Programming (ASP). We then apply Z-Score thresholding to the anomaly scores of an Isolation Forest trained using unlabeled data to simulate unknown attack scenarios. Finally, we encode the network anomaly in the logic program and perform abduction by refutation to identify the class of attack and the security requirements that this anomaly may violate. We demonstrate our technique using a smart home scenario, where we detect and diagnose anomalies in network traffic. We evaluate the precision, recall and F1-score of the anomaly detector and the diagnosis technique against 18 attacks from the ground truth labels provided by two datasets, CICIoT2023 and IoT-23. Our experiments show that the anomaly detector effectively identifies anomalies when the network traces are strong indicators of an attack. When provided with sufficient contextual data, the diagnosis logic effectively identifies true anomalies, and reduces the number of false positives reported by anomaly detectors. Finally, we discuss how our technique can support the selection of adequate security controls.
翻译:暂无翻译