Deep self-expressiveness-based subspace clustering methods have demonstrated effectiveness. However, existing works only consider the attribute information to conduct the self-expressiveness, which may limit the clustering performance. In this paper, we propose a novel adaptive attribute and structure subspace clustering network (AASSC-Net) to simultaneously consider the attribute and structure information in an adaptive graph fusion manner. Specifically, we first exploit an auto-encoder to represent input data samples with latent features for the construction of an attribute matrix. We also construct a mixed signed and symmetric structure matrix to capture the local geometric structure underlying data samples. Then, we perform self-expressiveness on the constructed attribute and structure matrices to learn their affinity graphs separately. Finally, we design a novel attention-based fusion module to adaptively leverage these two affinity graphs to construct a more discriminative affinity graph. Extensive experimental results on commonly used benchmark datasets demonstrate that our AASSC-Net significantly outperforms state-of-the-art methods. In addition, we conduct comprehensive ablation studies to discuss the effectiveness of the designed modules. The code will be publicly available at https://github.com/ZhihaoPENG-CityU.
翻译:深度自我表达的子空间群集方法已经证明是有效的,然而,现有的工作只考虑用于进行自我表达的属性信息,这可能会限制组合的性能。在本文件中,我们提议建立一个新的适应属性和结构子空间群集网络(ASSC-Net),以同时以适应图形聚合的方式审议属性和结构信息。具体地说,我们首先利用自动编码器来代表具有构建属性矩阵潜在特征的输入数据样本。我们还建立了一个混合的签名和对称结构矩阵矩阵,以捕捉本地数据样本的几何结构。然后,我们对构建的属性和结构矩阵进行自我表达,以分别了解其亲近性图。最后,我们设计了一个基于关注的聚合模块,以适应性地利用这两个相近性图来构建一个更具歧视性的亲近性图表。在常用的基准数据集上的广泛实验结果表明,我们的ASC-Net大大超越了状态-艺术方法。此外,我们还对构建的属性和结构矩阵进行全面的自我分析研究,以讨论设计模块的效能。