Recent advances in vision-language pre-training (VLP) have demonstrated impressive performance in a range of vision-language (VL) tasks. However, there exist several challenges for measuring the community's progress in building general multi-modal intelligence. First, most of the downstream VL datasets are annotated using raw images that are already seen during pre-training, which may result in an overestimation of current VLP models' generalization ability. Second, recent VLP work mainly focuses on absolute performance but overlooks the efficiency-performance trade-off, which is also an important indicator for measuring progress. To this end, we introduce the Vision-Language Understanding Evaluation (VLUE) benchmark, a multi-task multi-dimension benchmark for evaluating the generalization capabilities and the efficiency-performance trade-off (``Pareto SOTA'') of VLP models. We demonstrate that there is a sizable generalization gap for all VLP models when testing on out-of-distribution test sets annotated on images from a more diverse distribution that spreads across cultures. Moreover, we find that measuring the efficiency-performance trade-off of VLP models leads to complementary insights for several design choices of VLP. We release the VLUE benchmark to promote research on building vision-language models that generalize well to more diverse images and concepts unseen during pre-training, and are practical in terms of efficiency-performance trade-off.


翻译:第二,最近VLP的工作主要侧重于绝对业绩,但忽略了效率-业绩权衡,这也是衡量进展的一个重要指标。为此,我们引入了愿景-语言理解评价(VLUE)基准,这是用于评价通用能力以及VLP模式效率-业绩权衡(Pareto SOTA')的多功能性基准。我们发现,衡量VLP通用成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本-成本

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2016年12月31日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Top
微信扫码咨询专知VIP会员