We explore contemporary robust classification algorithms for overcoming class-dependant labelling noise: Forward, Importance Re-weighting and T-revision. The classifiers are trained and evaluated on class-conditional random label noise data while the final test data is clean. We demonstrate methods for estimating the transition matrix in order to obtain better classifier performance when working with noisy data. We apply deep learning to three data-sets and derive an end-to-end analysis with unknown noise on the CIFAR data-set from scratch. The effectiveness and robustness of the classifiers are analysed, and we compare and contrast the results of each experiment are using top-1 accuracy as our criterion.


翻译:我们探索当代可靠的分类算法,以克服依赖类类标签的噪音:前向、重要性重新加权和审校;在最后测试数据干净时,对分类员进行分类条件随机标签噪声数据的培训和评价;我们展示了评估过渡矩阵的方法,以便在使用噪音数据时获得更好的分类性能;我们深入学习了三个数据集,并从零开始在CIFAR数据集上进行端对端分析,其噪音未知;分析了分类员的效能和坚固性;我们比较和比较了每次实验的结果,我们的标准是使用最高至一级精确度作为标准。

0
下载
关闭预览

相关内容

【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
【Google-CMU】元伪标签的元学习,Meta Pseudo Labels
专知会员服务
32+阅读 · 2020年3月30日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Arxiv
10+阅读 · 2021年3月30日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关VIP内容
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
Top
微信扫码咨询专知VIP会员