We explore contemporary robust classification algorithms for overcoming class-dependant labelling noise: Forward, Importance Re-weighting and T-revision. The classifiers are trained and evaluated on class-conditional random label noise data while the final test data is clean. We demonstrate methods for estimating the transition matrix in order to obtain better classifier performance when working with noisy data. We apply deep learning to three data-sets and derive an end-to-end analysis with unknown noise on the CIFAR data-set from scratch. The effectiveness and robustness of the classifiers are analysed, and we compare and contrast the results of each experiment are using top-1 accuracy as our criterion.
翻译:我们探索当代可靠的分类算法,以克服依赖类类标签的噪音:前向、重要性重新加权和审校;在最后测试数据干净时,对分类员进行分类条件随机标签噪声数据的培训和评价;我们展示了评估过渡矩阵的方法,以便在使用噪音数据时获得更好的分类性能;我们深入学习了三个数据集,并从零开始在CIFAR数据集上进行端对端分析,其噪音未知;分析了分类员的效能和坚固性;我们比较和比较了每次实验的结果,我们的标准是使用最高至一级精确度作为标准。