Evolutionary Computation algorithms have been used to solve optimization problems in relation with architectural, hyper-parameter or training configuration, forging the field known today as Neural Architecture Search. These algorithms have been combined with other techniques such as the pruning of Neural Networks, which reduces the complexity of the network, and the Transfer Learning, which lets the import of knowledge from another problem related to the one at hand. The usage of several criteria to evaluate the quality of the evolutionary proposals is also a common case, in which the performance and complexity of the network are the most used criteria. This work proposes MO-EvoPruneDeepTL, a multi-objective evolutionary pruning algorithm. \proposal uses Transfer Learning to adapt the last layers of Deep Neural Networks, by replacing them with sparse layers evolved by a genetic algorithm, which guides the evolution based in the performance, complexity and robustness of the network, being the robustness a great quality indicator for the evolved models. We carry out different experiments with several datasets to assess the benefits of our proposal. Results show that our proposal achieves promising results in all the objectives, and direct relation are presented among them. The experiments also show that the most influential neurons help us explain which parts of the input images are the most relevant for the prediction of the pruned neural network. Lastly, by virtue of the diversity within the Pareto front of pruning patterns produced by the proposal, it is shown that an ensemble of differently pruned models improves the overall performance and robustness of the trained networks.


翻译:使用进化计算算法来解决与建筑、超参数或培训配置有关的优化问题,并构建了今天称为神经结构搜索的字段。这些算法已经与其他技术相结合,如神经网络的运行(降低网络的复杂性)和转移学习(通过遗传算法将知识从与手边问题相关的另一个问题中输入出来)。使用若干标准来评估进化建议的质量也是一个常见案例,在这个案例中,网络的性能和复杂性是最常用的标准。这项工作提出了MO-EvoPruneDeepTL,一个多目标的进化操纵算法。 \ 提案使用转移学习来调整深神经网络的最后一层,用稀薄的层来取代网络,以基因算法来指导网络性能、复杂性和稳健度的进化,这是进化模型的高度质量指标。我们用不同的数据集来评估我们提案的效益。结果显示我们的提案在目标中取得了很有希望的结果,通过最有说服力的进化的进化网络的进化图中,通过最有说服力的进化的进化的进化的进化的进化图中。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2022年2月24日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员