Evidence accumulation models (EAMs) are an important class of cognitive models used to analyse both response time and response choice data. The linear ballistic accumulation model (LBA) and the diffusion decision model (DDM) are two common EAMs, with modern applications employing hierarchical Bayesian versions. The first contribution of the paper is to propose EAMs having covariates, which we call Regression Evidence Accumulation Models (RegEAMs). The second contribution is to develop efficient exact and approximate Bayesian methods for estimating RegEAMs, including a simulation consistent particle Metropolis-within-Gibbs sampler and two variational Bayes approximate methods. The constrained VB method assumes that the posterior distribution of the subject level parameters are independent, but it is much faster than the regular VB for a dataset with many subjects. Initialising the VB method for complex EAMs can be very challenging, and two initialisation methods for the VB method are proposed. The initialisation method based on maximum a posteriori estimation (MAP) is shown to be scalable in the number of subjects. The new estimation methods are illustrated by applying them to simulated and real data, and through pseudo code. The code implementing the methods is freely available.


翻译:证据积累模型(EAM)是用来分析反应时间和反应选择数据的重要认知模型类别。线性弹道积累模型(LBA)和扩散决定模型(DDM)是两种常见的EMM,使用巴伊西亚等级版本的现代应用。本文的第一种贡献是提出具有共变的EMs,我们称之为回归证据累积模型(RegEAMS),第二个贡献是制定有效准确和近似巴伊西亚方法来估计RegEAMs,包括模拟一致粒子大都会内部采样器和两种变异贝类近似方法。受限制的VB方法假定主题级参数的后端分布是独立的,但比常规VB系统要快得多。为复杂的 EAMs初始化模型(RegEAMs)采用VB方法可能非常具有挑战性,为VB方法提出了两种初始化方法。基于后端估计(MAP)的初始化方法在主题数量上可以缩放。新的估算方法通过模拟和模拟方法加以说明。新的估算方法通过实际编码加以执行。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
159+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
14+阅读 · 2020年12月17日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
Phase-aware Speech Enhancement with Deep Complex U-Net
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员