For simulations of time-evolution problems, such as weather and climate models, taking the largest stable time-step is advantageous for reducing the wall-clock time. We propose methods for studying the effect of linear dispersive errors on the time-stepping accuracy of nonlinear problems. We demonstrate an application of this to the Rotating Shallow Water Equations (RSWEs). To begin, a nonlinear time-stepping `triadic error' metric is constructed from three-wave interactions. Stability polynomials, obtained from the oscillatory Dahlquist test equation, enable the computation of triadic errors for different time-steppers; we compare five classical schemes. We next provide test cases comparing different time-step sizes within a numerical model. The first case is of a reforming Gaussian height perturbation. This contains a nonlinear phase shift that can be missed with a large time-step. The second set of test cases initialise individual waves to allow specific triads to form. The presence of a slow transition from linear to nonlinear dynamics creates a good venue for testing how the slow phase information is replicated with a large time-step. Three models, including the finite element code Gusto, and the MetOffice's new LFRic model, are examined in these test cases with different time-steppers.
翻译:暂无翻译