项目名称: 基于AAO模板法的Ag纳米棒阵列的精细调控及其SERS响应特性研究

项目编号: No.51201180

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 金属材料学科

项目作者: 窦新存

作者单位: 中国科学院新疆理化技术研究所

项目金额: 25万元

中文摘要: 开发结构均一、可控性强、灵敏度高的活性基底是SERS技术发展的关键。本项目利用结构周期高度有序的氧化铝模板与技术参数可调的脉冲电化学沉积相结合的方法,在支撑衬底上精细调控制备排列规则、间距可控、长径比可控、阵列择优生长取向可控以及结晶性可控的Ag纳米棒阵列结构。研究纳米棒间距、长径比、择优生长取向以及结晶性对目标分子SERS信号的影响,探索各个结构参数与基底SERS活性强弱的对应关系,得出具有高SERS活性的Ag纳米棒阵列基底的特征结构参数。以此为指导,综合调控各项实验参数制备具有最优结构(确定间距、确定长径比、确定择优生长取向、确定结晶性)的Ag纳米棒阵列 SERS基底,实现对TNT分子的痕量检测。本研究将为AAO模板法精细调控制备高SERS活性的一维贵金属纳米阵列基底提供实验和理论支持,为贵金属纳米阵列SERS活性基底的应用奠定基础。

中文关键词: 三硝基甲苯;表面增强拉曼散射;银;纳米棒;纳米三角片

英文摘要: The key issue of Surface Enhanced Raman Scattering (SERS) technique is to devolop a SERS active substrate which is highly uniform, highly controllable and with a high senstivity. The aim of this proposal is to fabricate regularly arranged, interspace and aspect ratio controllabe Ag nanorod arrays, which can also be tuned with the preferential growth orientation and the crystallinity of the nanowires on the supporting substrate. By incorporating anodic aluminum oxide (AAO) template which is highly ordered and pulsed electrodeposition method which has many prameters can be tuned, the structure of the Ag nanorod arrays will be finely tuned. The influence of the interspace, the aspect ratio, the preferential growth orientation and the crystallinity of nanowires to the SERS signal of target molecule will be studied. The corresponding relationship between the structure prameters and the SERS activity of the array will be especially regarded. As a result, the characteristic structure parameters of a highly SERS active Ag nanorod array substrate will be obtained and they will be the standard to the design of a optimal SERS active Ag nanorod array substrate which has fixed interspace, fixed aspect ratio, fixed preferential growth orientation and fixed crystallinity. The growth of this optimized substrate will be realised

英文关键词: Trinitrotoluene;SERS;Silver;Nanorod;Nanotriangle

成为VIP会员查看完整内容
0

相关内容

基于深度神经网络的图像缺损修复方法综述
专知会员服务
25+阅读 · 2021年12月18日
专知会员服务
27+阅读 · 2021年9月6日
专知会员服务
86+阅读 · 2021年8月8日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
42+阅读 · 2021年2月8日
【NeurIPS 2020】视觉注意力神经编码
专知会员服务
40+阅读 · 2020年10月4日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
【干货】人类海马体精细亚区加工工作记忆的神经动力学机制
中国图象图形学学会CSIG
0+阅读 · 2021年12月8日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Residual Mixture of Experts
Arxiv
0+阅读 · 2022年4月20日
Age Optimal Sampling Under Unknown Delay Statistics
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
29+阅读 · 2022年3月28日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
小贴士
相关VIP内容
基于深度神经网络的图像缺损修复方法综述
专知会员服务
25+阅读 · 2021年12月18日
专知会员服务
27+阅读 · 2021年9月6日
专知会员服务
86+阅读 · 2021年8月8日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
42+阅读 · 2021年2月8日
【NeurIPS 2020】视觉注意力神经编码
专知会员服务
40+阅读 · 2020年10月4日
相关资讯
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
【干货】人类海马体精细亚区加工工作记忆的神经动力学机制
中国图象图形学学会CSIG
0+阅读 · 2021年12月8日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
相关论文
Residual Mixture of Experts
Arxiv
0+阅读 · 2022年4月20日
Age Optimal Sampling Under Unknown Delay Statistics
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
29+阅读 · 2022年3月28日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
微信扫码咨询专知VIP会员