Extracting classical information from quantum systems is an essential step of many quantum algorithms. However, this information could be corrupted as the systems are prone to quantum noises, and its distortion under quantum dynamics has not been adequately investigated. In this work, we introduce a systematic framework to study how well we can retrieve information from noisy quantum states. Given a noisy quantum channel, we fully characterize the range of recoverable classical information. This condition allows a natural measure quantifying the information recoverability of a channel. Moreover, we resolve the minimum information retrieving cost, which, along with the corresponding optimal protocol, is efficiently computable by semidefinite programming. As applications, we establish the limits on the information retrieving cost for practical quantum noises and employ the corresponding protocols to mitigate errors in ground state energy estimation.
翻译:从量子系统中提取古典信息是许多量子算法的一个基本步骤。 但是,这种信息可能会被腐蚀, 因为系统容易受到量子噪音的影响, 而在量子动态下, 其扭曲还没有得到充分的调查。 在这项工作中, 我们引入了一个系统化的框架, 研究我们从噪音量子状态中检索信息有多好。 由于量子频道吵闹, 我们充分描述可回收的古典信息的范围。 这个条件允许用自然测量来量化一个频道的信息可回收性。 此外, 我们解决了最小的信息检索成本, 与相应的最佳协议一起, 可以通过半确定性程序有效计算。 作为应用, 我们设定了信息检索成本的限度, 用于实际量子噪音, 并使用相应的协议来减少地面的能量估计错误 。