Deep learning has excelled on complex pattern recognition tasks such as image classification and object recognition. However, it struggles with tasks requiring nontrivial reasoning, such as algorithmic computation. Humans are able to solve such tasks through iterative reasoning -- spending more time thinking about harder tasks. Most existing neural networks, however, exhibit a fixed computational budget controlled by the neural network architecture, preventing additional computational processing on harder tasks. In this work, we present a new framework for iterative reasoning with neural networks. We train a neural network to parameterize an energy landscape over all outputs, and implement each step of the iterative reasoning as an energy minimization step to find a minimal energy solution. By formulating reasoning as an energy minimization problem, for harder problems that lead to more complex energy landscapes, we may then adjust our underlying computational budget by running a more complex optimization procedure. We empirically illustrate that our iterative reasoning approach can solve more accurate and generalizable algorithmic reasoning tasks in both graph and continuous domains. Finally, we illustrate that our approach can recursively solve algorithmic problems requiring nested reasoning
翻译:深度学习在图像分类和对象识别等复杂模式识别任务上取得了卓越的成绩。 然而,它却与需要非三进制推理(如算法计算)的任务纠缠不休。 人类能够通过迭代推理(花更多的时间思考更艰巨的任务)解决这些任务。 然而,大多数现有的神经网络都展示了由神经网络结构控制的固定计算预算,防止了对更艰巨的任务进行额外的计算处理。 在这项工作中,我们提出了一个与神经网络进行迭接推理的新框架。 我们训练了一个神经网络, 将能源景观与所有产出相匹配, 并且将迭代推理的每一步骤作为最小能源最小化的一步来找到一个最低限度的能源解决方案。 通过将推理作为能源最小化的问题, 导致更复杂的能源景观的更复杂问题, 我们就可以通过运行更复杂的优化程序来调整我们的基本计算预算。 我们用经验来说明,我们的迭代推理方法可以在图形和连续的域中解决更准确和普遍适用的算法推理任务。 最后, 我们说明我们的方法可以反复解决需要嵌式推理的问题。