We study time-series classification (TSC), a fundamental task of time-series data mining. Prior work has approached TSC from two major directions: (1) similarity-based methods that classify time-series based on the nearest neighbors, and (2) deep learning models that directly learn the representations for classification in a data-driven manner. Motivated by the different working mechanisms within these two research lines, we aim to connect them in such a way as to jointly model time-series similarities and learn the representations. This is a challenging task because it is unclear how we should efficiently leverage similarity information. To tackle the challenge, we propose Similarity-Aware Time-Series Classification (SimTSC), a conceptually simple and general framework that models similarity information with graph neural networks (GNNs). Specifically, we formulate TSC as a node classification problem in graphs, where the nodes correspond to time-series, and the links correspond to pair-wise similarities. We further design a graph construction strategy and a batch training algorithm with negative sampling to improve training efficiency. We instantiate SimTSC with ResNet as the backbone and Dynamic Time Warping (DTW) as the similarity measure. Extensive experiments on the full UCR datasets and several multivariate datasets demonstrate the effectiveness of incorporating similarity information into deep learning models in both supervised and semi-supervised settings. Our code is available at https://github.com/daochenzha/SimTSC


翻译:我们研究时间序列分类(TSC),这是时间序列数据挖掘的一项基本任务。以前的工作从两个主要方向接近TSC: (1) 基于时间序列的类似方法,根据最近的邻居对时间序列分类进行分类,(2) 直接学习数据驱动方式分类代表的深层次学习模式。我们受这两个研究线内不同工作机制的驱动,我们的目标是将它们联系起来,以便共同模拟时间序列相似性,并了解这些表述。这是一项具有挑战性的任务,因为我们不知道如何有效地利用相似性信息。为了应对这一挑战,我们建议采用类似性-Aware时间序列分类(SimTSC),这是一个概念简单和一般的框架,用来模拟与图形神经网络(GNNS)的相似性信息。具体地说,我们把TSC作为图表中的节点分类问题,将节点与时间序列相对应,并将联系与对等相似的相似性。我们进一步设计图表构建战略和配有负面抽样的批量培训算法,以提高培训效率。我们用ResNet将SimTSC作为UMS-动态时间序列(DTH)的骨架和动态同步性时间同步测试(DTIS-CRS-CRislustyal Steal sestal Studal sess)的多种数据测试,将多种数据都显示为我们现有的数据模型。

0
下载
关闭预览

相关内容

服务范围涵盖服务创新研发的所有计算和软件科学技术方面。IEEE服务计算事务强调算法、数学、统计和计算方法,这些方法是服务计算的核心,是面向服务的体系结构、Web服务、业务流程集成、解决方案性能管理、服务操作和管理的新兴领域。官网地址:http://dblp.uni-trier.de/db/journals/tsc/
专知会员服务
25+阅读 · 2021年4月2日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
72+阅读 · 2020年8月2日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
[每周ArXiv] 最新几篇GNN论文
图与推荐
0+阅读 · 2021年5月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
[每周ArXiv] 最新几篇GNN论文
图与推荐
0+阅读 · 2021年5月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员