Increasing automation in vehicles enabled by increased connectivity to the outside world has exposed vulnerabilities in previously siloed automotive networks like controller area networks (CAN). Attributes of CAN such as broadcast-based communication among electronic control units (ECUs) that lowered deployment costs are now being exploited to carry out active injection attacks like denial of service (DoS), fuzzing, and spoofing attacks. Research literature has proposed multiple supervised machine learning models deployed as Intrusion detection systems (IDSs) to detect such malicious activity; however, these are largely limited to identifying previously known attack vectors. With the ever-increasing complexity of active injection attacks, detecting zero-day (novel) attacks in these networks in real-time (to prevent propagation) becomes a problem of particular interest. This paper presents an unsupervised-learning-based convolutional autoencoder architecture for detecting zero-day attacks, which is trained only on benign (attack-free) CAN messages. We quantise the model using Vitis-AI tools from AMD/Xilinx targeting a resource-constrained Zynq Ultrascale platform as our IDS-ECU system for integration. The proposed model successfully achieves equal or higher classification accuracy (> 99.5%) on unseen DoS, fuzzing, and spoofing attacks from a publicly available attack dataset when compared to the state-of-the-art unsupervised learning-based IDSs. Additionally, by cleverly overlapping IDS operation on a window of CAN messages with the reception, the model is able to meet line-rate detection (0.43 ms per window) of high-speed CAN, which when coupled with the low energy consumption per inference, makes this architecture ideally suited for detecting zero-day attacks on critical CAN networks.
翻译:暂无翻译